Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Sci Rep ; 14(1): 8157, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589475

RESUMEN

Most of the countries in the world are affected by the coronavirus epidemic that put people in danger, with many infected cases and deaths. The crowding factor plays a significant role in the transmission of coronavirus disease. On the other hand, the vaccines of the covid-19 played a decisive role in the control of coronavirus infection. In this paper, a fractional order epidemic model (SIVR) of coronavirus disease is proposed by considering the effects of crowding and vaccination because the transmission of this infection is highly influenced by these two factors. The nonlinear incidence rate with the inclusion of these effects is a better approach to understand and analyse the dynamics of the model. The positivity and boundedness of the fractional order model is ensured by applying some standard results of Mittag Leffler function and Laplace transformation. The equilibrium points are described analytically. The existence and uniqueness of the non-integer order model is also confirmed by using results of the fixed-point theory. Stability analysis is carried out for the system at both the steady states by using Jacobian matrix theory, Routh-Hurwitz criterion and Volterra-type Lyapunov functions. Basic reproductive number is calculated by using next generation matrix. It is verified that disease-free equilibrium is locally asymptotically stable if R 0 < 1 and endemic equilibrium is locally asymptotically stable if R 0 > 1 . Moreover, the disease-free equilibrium is globally asymptotically stable if R 0 < 1 and endemic equilibrium is globally asymptotically stable if R 0 > 1 . The non-standard finite difference (NSFD) scheme is developed to approximate the solutions of the system. The simulated graphs are presented to show the key features of the NSFD approach. It is proved that non-standard finite difference approach preserves the positivity and boundedness properties of model. The simulated graphs show that the implementation of control strategies reduced the infected population and increase the recovered population. The impact of fractional order parameter α is described by the graphical templates. The future trends of the virus transmission are predicted under some control measures. The current work will be a value addition in the literature. The article is closed by some useful concluding remarks.


Asunto(s)
COVID-19 , Epidemias , Humanos , Vacunación , COVID-19/epidemiología , COVID-19/prevención & control , Número Básico de Reproducción , Epidemias/prevención & control , Extremidad Superior
3.
Sci Rep ; 13(1): 21938, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081841

RESUMEN

Hepatitis C infection and HIV/AIDS contaminations are normal in certain areas of the world, and because of their geographic overlap, co-infection can't be precluded as the two illnesses have a similar transmission course. This current work presents a co-infection model of HIV/AIDS and Hepatitis C virus with fuzzy parameters. The application of fuzzy theory aids in tackling the issues associated with measuring uncertainty in the mathematical depiction of diseases. The fuzzy reproduction number and fuzzy equilibrium points have been determined in this context, focusing on a model applicable to a specific group defined by a triangular membership function. Furthermore, for the model, a fuzzy non-standard finite difference (NSFD) technique has been developed, and its convergence is examined within a fuzzy framework. The suggested model is numerically validated, confirming the dependability of the devised NSFD technique, which successfully retains all of the key properties of a continuous dynamical system.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Coinfección , Infecciones por VIH , Hepatitis C , Humanos , Hepacivirus , Infecciones por VIH/complicaciones , Coinfección/complicaciones , Síndrome de Inmunodeficiencia Adquirida/complicaciones , Hepatitis C/complicaciones
4.
Sci Rep ; 13(1): 21993, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081842

RESUMEN

Salmonella Typhi, a bacteria, is responsible for typhoid fever, a potentially dangerous infection. Typhoid fever affects a large number of people each year, estimated to be between 11 and 20 million, resulting in a high mortality rate of 128,000 to 161,000 deaths. This research investigates a robust numerical analytic strategy for typhoid fever that takes infection protection into consideration and incorporates fuzzy parameters. The use of fuzzy parameters acknowledges the variation in parameter values among individuals in the population, which leads to uncertainties. Because of their diverse histories, different age groups within this community may exhibit distinct customs, habits, and levels of resistance. Fuzzy theory appears as the most appropriate instrument for dealing with these uncertainty. With this in mind, a model of typhoid fever featuring fuzzy parameters is thoroughly examined. Two numerical techniques are developed within a fuzzy framework to address this model. We employ the non-standard finite difference (NSFD) scheme, which ensures the preservation of essential properties like dynamic consistency and positivity. Additionally, we conduct numerical simulations to illustrate the practical applicability of the developed technique. In contrast to many classical methods commonly found in the literature, the proposed approach exhibits unconditional convergence, solidifying its status as a dependable tool for investigating the dynamics of typhoid disease.


Asunto(s)
Fiebre Tifoidea , Humanos , Fiebre Tifoidea/microbiología , Salmonella typhi
5.
Sci Rep ; 13(1): 22452, 2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38105278

RESUMEN

In this study, the Sobolev-type equation is considered analytically to investigate the solitary wave solutions. The Sobolev-type equations are found in a broad range of fields, such as ecology, fluid dynamics, soil mechanics, and thermodynamics. There are two novel techniques used to explore the solitary wave structures namely as; generalized Riccati equation mapping and modified auxiliary equation (MAE) methods. The different types of abundant families of solutions in the form of dark soliton, bright soliton, solitary wave solutions, mixed singular soliton, mixed dark-bright soliton, periodic wave, and mixed periodic solutions. The linearized stability of the model has been investigated. Solitons behave differently in different circumstances, and their behaviour can be better understood by building unique physical problems with particular boundary conditions (BCs) and starting conditions (ICs) based on accurate soliton solutions. So, the choice of unique physical problems from various solutions is also carried out. The 3D, line graphs and corresponding contours are drawn with the help of the Mathematica software that explains the physical behavior of the state variable. This information can help the researchers in their understanding of the physical conditions.

6.
Sci Rep ; 13(1): 20033, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973994

RESUMEN

In this study, the Lengyel-Epstein system is under investigation analytically. This is the reaction-diffusion system leading to the concentration of the inhibitor chlorite and the activator iodide, respectively. These concentrations of the inhibitor chlorite and the activator iodide are shown in the form of wave solutions. This is a reaction†"diffusion model which considered for the first time analytically to explore the different abundant families of solitary wave structures. These exact solitary wave solutions are obtained by applying the generalized Riccati equation mapping method. The single and combined wave solutions are observed in shock, complex solitary-shock, shock singular, and periodic-singular forms. The rational solutions also emerged during the derivation. In the Lengyel-Epstein system, solitary waves can propagate at various rates. The harmony of the system's diffusive and reactive effects frequently governs the speed of a single wave. Solitary waves can move at a variety of speeds depending on the factors and reaction kinetics. To show their physical behavior, the 3D and their corresponding contour plots are drawn for the different values of constants.

7.
Sci Rep ; 13(1): 15840, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37739986

RESUMEN

The terms susceptibility, exposure, infectiousness, and recovered all have some inherent ambiguity because different population members have different susceptibility levels, exposure levels, infectiousness levels, and recovery patterns. This uncertainty becomes more pronounced when examining population subgroups characterized by distinct behaviors, cultural norms, and varying degrees of resilience across different age brackets, thereby introducing the possibility of fluctuations. There is a need for more accurate models that take into account the various levels of susceptibility, exposure, infectiousness, and recovery of the individuals. A fuzzy SEIR model of the dynamics of the measles disease is discussed in this article. The rates of disease transmission and recovery are treated as fuzzy sets. Three distinct numerical approaches, the forward Euler, fourth-order Runge-Kutta, and nonstandard finite difference (NSFD) are employed for the resolution of this fuzzy SEIR model. Next, the outcomes of the three methods are examined. The results of the simulation demonstrate that the NSFD method adeptly portrays convergent solutions across various time step sizes. Conversely, the conventional Euler and RK-4 methods only exhibit positivity and convergence solutions when handling smaller step sizes. Even when considering larger step sizes, the NSFD method maintains its consistency, showcasing its efficacy. This demonstrates the NSFD technique's superior reliability when compared to the other two methods, while maintaining all essential aspects of a continuous dynamical system. Additionally, the results from numerical and simulation studies offer solid proof that the suggested NSFD technique is a reliable and effective tool for controlling these kinds of dynamical systems.The convergence and consistency analysis of the NSFD method are also studied.


Asunto(s)
Sarampión , Humanos , Reproducibilidad de los Resultados , Simulación por Computador , Incertidumbre
8.
Eur Phys J Plus ; 138(4): 350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124343

RESUMEN

The current study deals with the stochastic reaction-diffusion epidemic model numerically with two proposed schemes. Such models have many applications in the disease dynamics of wildlife, human life, and others. During the last decade, it is observed that the epidemic models cannot predict the accurate behavior of infectious diseases. The empirical data gained about the spread of the disease shows non-deterministic behavior. It is a strong challenge for researchers to consider stochastic epidemic models. The effect of the stochastic process is analyzed. So, the SIR epidemic model is considered under the influence of the stochastic process. The time noise term is taken as the stochastic source. The coefficient of the stochastic term is a Borel function, and it is used to control the random behavior in the solutions. The proposed stochastic backward Euler scheme and the proposed stochastic implicit finite difference scheme (IFDS) are used for the numerical solution of the underlying model. Both schemes are consistent in the mean square sense. The stability of the schemes is proven with Von-Neumann criteria and schemes are unconditionally stable. The proposed stochastic backward Euler scheme converges toward a disease-free equilibrium and does not converge toward an endemic equilibrium but also possesses negative behavior. The proposed stochastic IFD scheme converges toward disease-free equilibrium and endemic equilibrium. This scheme also preserves positivity. The graphical behavior of the stochastic SIR model is much similar to the classical SIR epidemic model when noise strength approaches zero. The three-dimensional plots of the susceptible and infected individuals are drawn for two cases of endemic equilibrium and disease-free equilibriums. The efficacy of the proposed scheme is shown in the graphical behavior of the test problem for the various values of the parameters.

9.
Cureus ; 15(4): e37616, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37069840

RESUMEN

A 17-year-old boy presented during the COVID-19 pandemic in late 2021 with intractable fevers and hemodynamic instability with early gastrointestinal disturbances, resembling features of the pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. Our patient required intensive unit care for persistently worsening signs of cardiac failure; initial admission echocardiography demonstrated severe left ventricular dysfunction with an estimated ejection fraction of 27%. Treatment with intravenous IgG and corticosteroids showed a rapid improvement in symptoms, but further specialist cardiological input was required for heart failure in the coronary care unit. Substantial improvement in cardiac function was shown on echocardiography before discharge, initially to left ventricular ejection fraction (LVEF) 51% two days after the commencement of treatment and then to >55% four days later, and on cardiac MRI. An echocardiogram one month post-discharge was normal, and the patient reported complete resolution of heart failure symptoms by four months in addition to full restoration of functional status.

10.
Sci Rep ; 13(1): 1990, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737648

RESUMEN

In this article, the ratio-dependent prey-predator system perturbed with time noise is numerically investigated. It relates to the population densities of the prey and predator in an ecological system. The initial prey-predator models only depend on the time and a couple of the differential equations. We are considering a model where the prey-predator interaction is influenced by both space and time and the need for a coupled nonlinear partial differential equation with the effect of the random behavior of the environment. The existence of the solutions is guaranteed by using Schauder's fixed point theorem. The computation of the underlying model is carried out by two schemes. The proposed stochastic forward Euler scheme is conditionally stable and consistent with the system of the equations. The proposed stochastic non-standard finite difference scheme is unconditionally stable and consistent with the system of the equations. The graphical behavior of a test problem for different values of the parameters is shown which depicts the efficacy of the schemes. Our numerical results will help the researchers to consider the effect of the noise on the prey-predator model.

12.
Comput Biol Med ; 148: 105673, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35803748

RESUMEN

Numerical models help us to understand the transmission dynamics of infectious diseases. Since vectors transmit many diseases, vector host models are very important. The transmission dynamics of Dengue fever with an incubation period of the virus with fuzzy parameters have been analyzed in this article. Sometimes it is very difficult and almost impossible to collect numerical data as a fixed value. Due to the lack of precise numerical data for the parameters, the fuzzy model is considered here. Fuzzy theory is a very powerful mathematical tool for dealing with imprecision and uncertainties. In this article, the chance of the occurrence of dengue infection ßh(a), the recovery rate r(a) and the mortality rate of the human population µh(a) due to dengue fever are considered fuzzy numbers. The stability of equilibrium points of the model has been determined and a reproduction number has been derived respectively in a fuzzy sense. A numerical model is designed for the studied model having fuzzy parameters and some numerical experiments are performed which indicate that the proposed method shows positivity, stability, and convergence at each time step size. Hence the method preserves the essential features of the dynamic epidemic models.


Asunto(s)
Dengue , Enfermedades Transmitidas por Vectores , Animales , Humanos , Insectos Vectores , Modelos Biológicos
13.
PLoS One ; 17(6): e0268786, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35709148

RESUMEN

SONAR signal processing plays an indispensable role when it comes to parameter estimation of Direction of Arrival (DOA) of acoustic plane waves for closely spaced target exclusively under severe noisy environments. Resolution performance of classical MUSIC and ESPRIT algorithms and other subspace-based algorithms decreases under scenarios like low SNR, smaller number of snapshots and closely spaced targets. In this study, optimization strength of swarm intelligence of Cuckoo Search Algorithm (CSA) is accomplished for viable DOA estimation in different scenarios of underwater environment using a Uniform Linear Array (ULA). Higher resolution for closely spaced targets is achieved using smaller number of snapshots viably with CSA by investigating global minima of the highly nonlinear cost function of ULA. Performance analysis of CSA for different number of targets employing estimation accuracy, higher resolution, variance analysis, frequency distribution of RMSE over the monte Carlo runs and robustness against noise in the presence of additive-white Gaussian measurement noise is achieved. Comparative studies of CSA with Root MUSIC and ESPRIT along with Crammer Rao Bound analysis witnesses better results for estimating DOA parameters which are further endorsed from the results of Monte Carlo simulations.


Asunto(s)
Algoritmos , Heurística , Acústica , Distribución Normal , Procesamiento de Señales Asistido por Computador
14.
Comput Methods Programs Biomed ; 218: 106709, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35235894

RESUMEN

BACKGROUND AND OBJECTIVE: In this work, a mathematical model based on differential equations is proposed to describe the propagation of polio in a human population. The motivating system is a compartmental nonlinear model which is based on the use of ordinary differential equations and four compartments, namely, susceptible, exposed, infected and vaccinated individuals. METHODS: In this manuscript, the mathematical model is extended in order to account for spatial diffusion in one dimension. Nonnegative initial conditions are used, and we impose homogeneous Neumann conditions at the boundary. We determine analytically the disease-free and the endemic equilibria of the system along with the basic reproductive number. RESULTS: We establish thoroughly the nonnegativity and the boundedness of the solutions of this problem, and the stability analysis of the equilibrium solutions is carried out rigorously. In order to confirm the validity of these results, we propose an implicit and linear finite-difference method to approximate the solutions of the continuous model. CONCLUSIONS: The numerical model is stable in the sense of von Neumann, it yields consistent approximations to the exact solutions of the differential problem, and that it is capable of preserving unconditionally the positivity of the approximations. For illustration purposes, we provide some computer simulations that confirm some theoretical results derived in the present manuscript.


Asunto(s)
Modelos Teóricos , Poliomielitis , Número Básico de Reproducción , Simulación por Computador , Difusión , Humanos
15.
Nonlinear Dyn ; 107(4): 3963-3982, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35002076

RESUMEN

Countries affected by the coronavirus epidemic have reported many infected cases and deaths based on world health statistics. The crowding factor, which we named "crowding effects," plays a significant role in spreading the diseases. However, the introduction of vaccines marks a turning point in the rate of spread of coronavirus infections. Modeling both effects is vastly essential as it directly impacts the overall population of the studied region. To determine the peak of the infection curve by considering the third strain, we develop a mathematical model (susceptible-infected-vaccinated-recovered) with reported cases from August 01, 2021, till August 29, 2021. The nonlinear incidence rate with the inclusion of both effects is the best approach to analyze the dynamics. The model's positivity, boundedness, existence, uniqueness, and stability (local and global) are addressed with the help of a reproduction number. In addition, the strength number and second derivative Lyapunov analysis are examined, and the model was found to be asymptotically stable. The suggested parameters efficiently control the active cases of the third strain in Pakistan. It was shown that a systematic vaccination program regulates the infection rate. However, the crowding effect reduces the impact of vaccination. The present results show that the model can be applied to other countries' data to predict the infection rate.

16.
Entropy (Basel) ; 23(11)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34828099

RESUMEN

Global navigation satellite systems have been used for reliable location-based services in outdoor environments. However, satellite-based systems are not suitable for indoor positioning due to low signal power inside buildings and low accuracy of 5 m. Future smart homes demand low-cost, high-accuracy and low-power indoor positioning systems that can provide accuracy of less than 5 m and enable battery operation for mobility and long-term use. We propose and implement an intelligent, highly accurate and low-power indoor positioning system for smart homes leveraging Gaussian Process Regression (GPR) model using information-theoretic gain based on reduction in differential entropy. The system is based on Time Difference of Arrival (TDOA) and uses ultra-low-power radio transceivers working at 434 MHz. The system has been deployed and tested using indoor measurements for two-dimensional (2D) positioning. In addition, the proposed system provides dual functionality with the same wireless links used for receiving telemetry data, with configurable data rates of up to 600 Kbauds. The implemented system integrates the time difference pulses obtained from the differential circuitry to determine the radio frequency (RF) transmitter node positions. The implemented system provides a high positioning accuracy of 0.68 m and 1.08 m for outdoor and indoor localization, respectively, when using GPR machine learning models, and provides telemetry data reception of 250 Kbauds. The system enables low-power battery operation with consumption of <200 mW power with ultra-low-power CC1101 radio transceivers and additional circuits with a differential amplifier. The proposed system provides low-cost, low-power and high-accuracy indoor localization and is an essential element of public well-being in future smart homes.

17.
Comput Methods Programs Biomed ; 209: 106322, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34390936

RESUMEN

BACKGROUND AND OBJECTIVE: We present and analyze a nonstandard numerical method to solve an epidemic model with memory that describes the propagation of Ebola-type diseases. The epidemiological system contemplates the presence of sub-populations of susceptible, exposed, infected and recovered individuals, along with nonlinear interactions between the members of those sub-populations. The system possesses disease-free and endemic equilibrium points, whose stability is studied rigorously. METHODS: To solve the epidemic model with memory, a nonstandard approach based on Grünwald-Letnikov differences is used to discretize the problem. The discretization is conveniently carried out in order to produce a fully explicit and non-singular scheme. The discrete problem is thus well defined for any set of non-negative initial conditions. RESULTS: The existence and uniqueness of the solutions of the discrete problem for non-negative initial data is thoroughly proved. Moreover, the positivity and the boundedness of the approximations is also theoretically elucidated. Some simulations confirm the validity of these theoretical results. Moreover, the simulations prove that the computational model is capable of preserving the equilibria of the system (both the disease-free and the endemic equilibria) as well as the stability of those points. CONCLUSIONS: Both theoretical and numerical results establish that the computational method proposed in this work is capable of preserving distinctive features of an epidemiological model with memory for the propagation of Ebola-type diseases. Among the main characteristics of the numerical integrator, the existence and the uniqueness of solutions, the preservation of both positivity and boundedness, the preservation of the equilibrium points and their stabilities as well as the easiness to implement it computationally are the most important features of the approach proposed in this manuscript.


Asunto(s)
Epidemias , Fiebre Hemorrágica Ebola , Fiebre Hemorrágica Ebola/epidemiología , Humanos
18.
Nonlinear Dyn ; 106(2): 1293-1310, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34219967

RESUMEN

In this study, a novel reaction-diffusion model for the spread of the new coronavirus (COVID-19) is investigated. The model is a spatial extension of the recent COVID-19 SEIR model with nonlinear incidence rates by taking into account the effects of random movements of individuals from different compartments in their environments. The equilibrium points of the new system are found for both diffusive and non-diffusive models, where a detailed stability analysis is conducted for them. Moreover, the stability regions in the space of parameters are attained for each equilibrium point for both cases of the model and the effects of parameters are explored. A numerical verification for the proposed model using a finite difference-based method is illustrated along with their consistency, stability and proving the positivity of the acquired solutions. The obtained results reveal that the random motion of individuals has significant impact on the observed dynamics and steady-state stability of the spread of the virus which helps in presenting some strategies for the better control of it.

19.
Comput Methods Programs Biomed ; 204: 106054, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33813059

RESUMEN

BACKGROUND AND OBJECTIVE: We propose a nonstandard computational model to approximate the solutions of a stochastic system describing the propagation of an infectious disease. The mathematical model considers the existence of various sub-populations, including humans who are susceptible to the disease, asymptomatic humans, infected humans and recovered or quarantined individuals. Various mechanisms of propagation are considered in order to describe the propagation phenomenon accurately. METHODS: We propose a stochastic extension of the deterministic model, considering a random component which follows a Brownian motion. In view of the difficulties to solve the system exactly, we propose a computational model to approximate its solutions following a nonstandard approach. RESULTS: The nonstandard discretization is fully analyzed for positivity, boundedness and stability. It is worth pointing out that these properties are realized in the discrete scenario and that they are thoroughly established herein using rigorous mathematical arguments. We provide some illustrative computational simulations to exhibit the main computational features of this approach. CONCLUSIONS: The results show that the nonstandard technique is capable of preserving the distinctive characteristics of the epidemiologically relevant solutions of the model, while other (classical) approaches are not able to do it. For the sake of convenience, a computational code of the nonstandard discrete model may be provided to the readers at their requests.


Asunto(s)
Coronavirus , Simulación por Computador , Computadores , Humanos , Modelos Teóricos , Dinámicas no Lineales , Procesos Estocásticos
20.
Results Phys ; 20: 103663, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33362986

RESUMEN

Analysis of mathematical models projected for COVID-19 presents in many valuable outputs. We analyze a model of differential equation related to Covid-19 in this paper. We use fractal-fractional derivatives in the proposed model. We analyze the equilibria of the model. We discuss the stability analysis in details. We apply very effective method to obtain the numerical results. We demonstrate our results by the numerical simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...